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Foreword

This timely book offers the reader a thorough introduction and overview of the
topic of statistics, with applications in actuarial science, mathematical finance
and quantitative risk management. The text contains sections on supervised
learning, unsupervised learning, time-series models and simulation. These top-
ics, related to both traditional and modern methods in data analytics are deemed
important for today’s actuaries according to the International Actuarial Asso-
ciation and the profession at large. The authors have brought together in one
volume a unique and inspiring survey of these topics. The breadth of the coverage
provides an almost full-scale picture of statistics that is applicable in actuarial,
financial and quantitative risk management contexts.

One of the great merits of this book is that the presentation is far from ency-
clopedic. In the treatment of the different topics, several chapters contain the
necessary theoretical background, immediately followed by many case studies as
practical illustrations. The case studies are relevant, timely and trigger a reader’s
curiosity to learn more. They also cover a broad spectrum of highly relevant issues
in insurance practice and will enable the reader to immediately apply what they
learned to a practical situation. This pedagogical approach of blending theory
with case studies using R makes this book unique in the area of statistics and at
the same time relevant to both students and practitioners. The appendix offering
an introduction to R provides a useful addition that helps to make the book self-
contained and comprehensive. The mathematical skills required to be able to
read the book are at a reasonable level. It assumes knowledge in probability and
inference; a one-year course in mathematical statistics is sufficient.

The actuarial community is fortunate to have Guojun Gan and Emiliano
Valdez write this significant book for the actuarial profession and the financial
community. Dr. Valdez has built up a worldwide reputation over the years and
Dr. Gan is quickly gaining momentum as a recognized expert in data mining
and data analytics. Both authors are colleagues at the University of Connecticut,
which offers an outstanding actuarial program. I have had the pleasure to work
with Dr. Valdez on some research-related projects. During our collaborations
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and accompanying discussions, I saw firsthand Dr. Valdez’s strong commitment
to improving and expanding the knowledge base for the actuarial profession.
This book is a testament to his commitment. Both authors deserve praise and
congratulations for this remarkable work!

Jan Dhaene
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Preface

This book is written primarily for actuarial students and practitioners who wish
to learn the basic fundamentals and applications of statistical and simulation
models using R programming. We assume that readers have studied probability
at the level of (Ross, 2012a). We also assume that readers come to it with some
knowledge of mathematical statistics (e.g., descriptive statistics, hypothesis test-
ing, and confidence intervals), finance (e.g., risk-free interest rate, stocks, and
returns), linear algebra (e.g., matrix operations), and calculus. We do not assume
any prior programming experience.

In this textbook, we use a series of case studies to introduce the applications of
classical supervised learning, unsupervised learning, time series, and simulation
models. The content covers several topics on data analytics that have been
prescribed by the International Actuarial Association. In particular, it has been
designed to cover the learning objectives for the Statistics for Risk Modeling (SRM)
Exam established by the Society of Actuaries. Some materials from this textbook
also cover parts of the syllabus for the Modern Actuarial Statistics (MAS-I and
MAS-II) Exams of the Casualty Actuarial Society. The treatment in this textbook
differs from existing books in the following ways. First, this textbook teaches the
steps of how to implement models in R at an elementary level. Second, this book
gives students the opportunity to recognize the power of applied statistics and R
programming by exposing them to real world problems. Finally, this book uses
the case study method that helps better connect theory to practice and bridge
the gap between academia and the workforce (Barkley et al., 2014).

During the past two decades, the rapid advancement of information technol-
ogy has led to an explosive increase of data in various fields. Beyond all doubt,
we are living in the era of big data; the term big data was coined to describe the
enormous amount of data captured by enterprises in our world. According to a
report (Manyika et al., 2011) published by McKinsey & Company, an American
multinational management consulting firm, big data is the “the Next Frontier for
Innovation, Competition, and Productivity.” Big data has also attracted signifi-
cant attention from many national governments including the US government.

xvii
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In March 2012, the Obama Administration announced more than $200 million in
investment to launch the “Big Data Research and Development Initiative.”

Big data is affecting almost all industries, including the insurance industry
(Ferris et al., 2014). Actuaries generally have excellent business acumen, but
many do not get the proper training in order to code in high-level programming
languages such as Java, C++, C#, and R. As coding and programming are essential
to conduct analysis for large datasets, we have written this textbook to teach R
programming to undergraduate students who intend to pursue a career in actu-
arial science, finance, or quantitative risk management. At the same time, this
textbook aims to teach students topics in applied statistics including supervised
learning, unsupervised learning, and time series models. Although this book
does not deal directly with big data, it helps students develop the skills that are
necessary for big data analysis.

Among the many high-level programming languages, we have chosen to teach
R to students for the following reasons. First, R is an open source programming
language and software environment designed for data analysis and visualization.
Students can use R free of charge. Second, R contains many packages that make
the language versatile and because of this versatility, R has become very popular
and is useful both in academia and in the professional world. Third, R is easy
to learn compared to other high-level programming languages such as C++ and
Java. Finally, R is one of the top five tools used for big data mining and analysis
according to a survey conducted by KDNuggets in 2012 (Chen et al., 2014, Section
5.4).

This book can serve several purposes. First, this book can be used as a pri-
mary textbook for a course taken by students to study the SRM Exam or a similar
one. Second, this book is useful for students and practitioners to learn R pro-
gramming and its applications in actuarial science, finance, and quantitative risk
management. Third, this book is also suitable as a supplementary book used by
instructors for courses related to statistical data analysis. Finally, the uniqueness
of the case study approach used by this book provides significant promise to
recommend it as a reference for advanced actuarial exams and online modules
requiring R programming.

This book would not have been made possible without the assistance of
several people. First, we would like to extend our appreciation to the following
reviewers whose comments helped to significantly improve the quality of this
book: Mary Pat Campbell, Runhuan Feng, Louise Francis, Yuanying Michelle
Guan, Emma Ran Li, Nicole Radziwill, Peng Shi, and Xiaofei Susan Wang. We
would like to thank the students at the University of Connecticut who used and
commented on earlier versions of this book. Our special thanks also go to Michal
Pesta and the participants of the Workshop on Advanced Statistical Methods
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hosted by the Czech Society of Actuaries and Charles University in Prague on
June 25-26, 2018; many materials presented by Professor Valdez at that workshop
were derived from this textbook. We are also very grateful to Garrett Doherty,
who checked the final layout and shepherded the book through production,
Brandon Hill, who took the cover pictures, and Jeff Melaragno, who designed
the book cover. Last but not certainly the least, our warm-hearted thanks go
to Stephen Camilli of ACTEX Learning, whose continued support and constant
communication helped facilitate the completion of this book.

Guojun Gan and Emiliano A. Valdez
Storrs, Connecticut, USA
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Chapter 2

Case Study: Implementing the
Capital Asset Pricing Model

The capital asset pricing model (CAPM) is a widely used model in finance that is
used to price an individual stock or portfolio. In this case study, we illustrate how
to implement the CAPM using a simple linear regression model. In particular,
readers will be able to do the following in R:

• summarize and visualize data
• build simple linear regression models
• use the method of least squares to estimate regression parameters
• calculate and interpret the coefficient of determination (R2) and the mean

squared error
• create and interpret the ANOVA table
• calculate confidence intervals of regression coefficients
• calculate prediction intervals
• understand the numbers in the model summary produced by R
• identify outliers and high leverage points

2.1 Problem Description

Sharpe (1964) and Lintner (1965) developed the capital asset pricing model
(CAPM), which can be used to price an individual stock or portfolio. Under
the CAPM model, all investors are assumed to be rational and risk-averse, have
homogeneous expectations, be broadly diversified across a range of investments,
and be able to borrow and lend money freely at the same risk-free rate. In such a
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market, the expected return of a stock can be expressed as

E [R] = R f +β(E [Rm]−R f ), (2.1)

where R is the return on the stock, Rm is the return on the market portfolio, R f is
the return on the risk-free asset, and β is a parameter that can be interpreted as a
measure of the riskiness of the stock. In the CAPM, β is determined by

β= Cov(R,Rm)

Var(Rm)
= ρ(R,Rm)

p
Var(R)p

Var(Rm)
, (2.2)

where Cov(R,Rm) denotes the covariance between R and Rm , ρ(R,Rm) denotes
the correlation between R and Rm , Var(R) and Var(Rm) denote the variances of R
and Rm , respectively.

To implement the CAPM, we can fit a basic (or single ) linear regression model
of a stock’s excess return on the market-portfolio’s excess return as follows

Ri −R f ,i =α+β(Rm,i −R f ,i )+εi , i = 1,2, . . . ,n, (2.3)

where Ri is the realized return on the stock in period i , Rm,i is the realized return
on the stock in period i , R f ,i is the realized return on the risk-free asset in period
i , n is the number of data points, and εi is random noise.

Under the assumptions of the CAPM, the regression coefficients (α,β) esti-
mated from Equation (2.3) are such that α is zero and β is the same as in the
CAPM model given in Equation (2.1). In the subsequent sections, we illustrate the
implementation of the CAPM by estimating the β of Manulife Financial’s stock.
Manulife Financial is one of the largest insurance companies with its corporate
headquarter in Toronto, Canada. In our implementation, we use the S&P 500
index as a proxy for the market-portfolio and the 3-month US treasury rate as the
risk-free rate.

2.2 Data Description

To estimate the β of Manulife Financial’s stock, we follow standard practice in the
securities industry and use monthly prices. We downloaded historical monthly
data from Yahoo Finance1. The symbols of Manulife Financial’s stock, the S&P
500 index, and the 3-month treasury rate are MFC, ˆGSPC, and ˆIRX, respectively.

Since we downloaded the data from the same source, the formats of the
files are the same. All the data files contain the following seven columns: Date,

1http://finance.yahoo.com/

http://finance.yahoo.com/
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Open, High, Low, Close, Volume, and Adj Close. Since the data is monthly data,
the Date column contains the dates of the first business days of the available
months. The Open, High, Low, and Close columns contain the open, the highest,
the lowest, and the close prices of the corresponding months, respectively. The
Volume column contains the number of transactions for the months. The Adj
Close column contains the close price adjusted for dividends. We use the prices
from the Adj Close column for our estimation.

The price data of the three securities was saved as three CSV (Comma-Separated
Values) files named as MFC.csv, sp500.csv, and irx.csv, respectively. Although
the three files have the same format, they contain a different number of data
points. The file MFC.csv contains prices for 192 days, with one observation from
each month, from September 24, 1999 to August 3, 2015. The file sp500.csv

contains prices for 788 days from January 3, 1950 to August 3, 2015. The file
irx.csv contains prices for 308 days from January 4, 1990 to August 3, 2015.

2.3 Loading the Data into R

Since the data was saved into CSV files, we can use the function read.csv to load
the data into R. Suppose that the data files are in the current working directory.
Then we can read the data as follows:

1 > mfc <- read.csv('MFC.csv',stringsAsFactors=FALSE)

2 > sp500 <- read.csv('sp500.csv',stringsAsFactors=FALSE)

3 > irx <- read.csv('irx.csv',stringsAsFactors=FALSE)

4 > head(mfc)

5 Date Open High Low Close Volume Adj.Close

6 1 2015 -08 -03 17.74 18.00 14.26 15.76 2708000 15.76000

7 2 2015 -07 -01 18.76 18.91 17.08 17.73 1899400 17.59599

8 3 2015 -06 -01 18.30 19.61 18.04 18.59 2290100 18.44949

9 4 2015 -05 -01 18.18 19.34 18.07 18.35 1795600 18.21131

10 5 2015 -04 -01 16.97 18.58 16.79 18.21 1697600 17.93680

11 6 2015 -03 -02 17.48 17.73 16.57 17.01 2081400 16.75480

12 > dim(mfc)

13 [1] 192 7

14 > dim(sp500)

15 [1] 788 7

16 > dim(irx)

17 [1] 308 7

In the above code, we used the function head to display the first several rows
of the data frame. Actually, this function can be used to display the first several
elements of a vector and the first several rows of a matrix. From the first several
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rows of the stock price data, we see that the prices are in reverse chronological
order.

g

Exercise 2.1. Suppose that we read the file MFC.csv using the following com-
mand

1 mfc <- read.csv('MFC.csv')

What is the return value of the following call?

1 mode(mfc$Date)

Exercise 2.2. Let mfc be the data frame created by

1 mfc <- read.csv('MFC.csv', stringsAsFactors=FALSE)

Look at the help of the function as.Date and convert the vector of strings
mfc$Date to a vector of date objects in R.

h

Now we have the raw price data of the three securities in the R workspace.
Suppose that we want to use 10 years of monthly returns from January 2005 to
December 2014 to estimate theβ of Manulife Financial’s stock. We need to extract
the price data and calculate the returns for the stock and the S&P 500 index. Since
the monthly prices are obtained from the first business days of the months, we
can use the next month’s price as this month’s end price. Then we can extract the
price data and calculate the returns as follows:

1 > ind <- seq(from =127,to=8,by=-1)

2 > mfcReturn <- mfc$Adj.Close[ind] / mfc$Adj.Close[ind +1]

- 1

3 > sp500Return <- sp500$Adj.Close[ind] / sp500$Adj.Close[

ind+1] - 1

4 > rfRate <- irx$Adj.Close[ind+1] / 1200

5 > dat10y <- data.frame(mfc=mfcReturn - rfRate , sp500=

sp500Return - rfRate)

6 > head(dat10y)

7 mfc sp500

8 1 0.062016836 0.016885013

9 2 0.030516898 -0.021359322

10 3 -0.045465272 -0.022376915
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11 4 0.006420319 0.027587880

12 5 0.038077092 -0.002544381

13 6 0.049531119 0.033418287

14 > tail(dat10y)

15 mfc sp500

16 115 -0.004217211 0.037640295

17 116 -0.046100286 -0.015528837

18 117 -0.014556400 0.023190627

19 118 0.056440711 0.024531089

20 119 -0.040707677 -0.004192755

21 120 -0.157704995 -0.031071639

In the above code, we first created a vector of indices named ind in order to
extract the data we wanted for our analysis. The vector contains a sequence of de-
creasing integers so that we can change the order of the prices to a chronological
order. Then we calculated the monthly returns for the stock and the index. We
also calculated the risk-free rates from the 3-month US treasury rates by dividing
them by 12×100 because these treasury rates are annualized percentages. In
Line 5 of the above output, we calculated the excess monthly returns of the stock
and the index and put them into a data frame named dat10y.

In Line 14 of the above output, we used the function tail to display the last
several rows of the data frame. Similar to the function head, the function tail is
a useful function for checking data in R.

2.4 Data Visualization and Summarization

We now have the excess returns on the stock and the index in the R workspace.
We are ready to examine the data before fitting a regression model. We need to
make sure the data satisfies the assumptions of linear regression models.

To get an impression of the distribution of each variable, we plot histograms
of the two variables as follows:

1 par(mfrow=c(1,2))

2 hist(dat10y$mfc , breaks =20)

3 hist(dat10y$sp500 , breaks =20)

The resulting histograms are shown in Figure 2.1. The histograms show that both
variables are approximately normally distributed.

Instead of plotting histograms, we can also calculate the summary statistics
to investigate the distribution of an individual variable in isolation of the other.
Common summary statistics include the minimum, the maximum, the mean,
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Figure 2.1: Histograms of the excess returns on Manulife Financial’s stock and the
S&P 500 index.

and the percentiles. To get the summary statistics of the variables, we use the
function summary as follows:

1 > summary(dat10y)

2 mfc sp500

3 Min. : -0.453189 Min. : -0.170175

4 1st Qu .: -0.025397 1st Qu .: -0.016219

5 Median : 0.014469 Median : 0.008698

6 Mean : 0.005639 Mean : 0.004129

7 3rd Qu.: 0.051921 3rd Qu.: 0.028892

8 Max. : 0.526619 Max. : 0.107715

The output of the function summary gives us an overview of the statistical proper-
ties of the data. From these summary statistics, we observe a wide range of excess
returns on both Manulife Financial’s stock and the S&P500 index, but more so
with the excess returns on Manulife Financial’s stock. For example, for Manulife
Financial’s stock, the maximum excess return is 52.7% and the minimum excess
return is -45.3%. Furthermore, since the mean is less than the median, both
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variables are slightly skewed to the left.
Histograms and summary statistics are useful to examine the distribution of

an individual variable in isolation of the other. Since linear regression is used
to model the linear relationship between variables, we can use scatter plots to
visualize the relationship between the two variables. To produce a scatter plot of
the excess returns on the stock and those on the index, we proceed as follows:

1 with(dat10y , plot(sp500 , mfc))

In the above code, we used the function with, which applies an expression to a
dataset. The above command is equivalent to the following command:

1 plot(dat10y$sp500 , dat10y$mfc)

The resulting scatter plot is shown in Figure 2.2. The scatter plot shows a positive
linear relationship.
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Figure 2.2: A scatter plot of the excess returns on Manulife Financial’s stock and
those on the S&P 500 index.
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To calculate the correlation coefficient between the excess returns, we pro-
ceed as follows:

1 > with(dat10y , cor(mfc , sp500))

2 [1] 0.725671

The correlation coefficient of the excess returns turns out to be about 0.73, which
indicates that the excess returns on the stock are positively correlated to those on
the index. In this case, when the excess return on the index is high, the excess
return on the stock is also high, and vice versa.

g

Exercise 2.3. The sample mean and the sample standard deviation of {x1, x2, . . . , xn}
are defined in Equation (1.2) and Equation (1.3), respectively.

(a) Write an R function called calculateStd(x) to calculate the sample stan-
dard deviation of the vector x. What is the return of the following call?

1 calculateStd(dat10y$mfc)

(b) Write an R function called calculateCorr(x,y) to calculate the Pearson
correlation coefficient of the two vectors x and y. What is the return of the
following call:

1 calculateCorr(dat10y$mfc , dat10y$sp500)

h

2.5 Fitting a Basic Linear Regression Model

According to our analysis in the previous section, the excess returns on the stock
seem to be normally distributed and have a strong positive linear relationship
with those of the index. In this section, we fit a linear regression model to the
data by using the method of least squares to estimate the regression coefficients.

To fit a regression line to the data in R, we use the function lm as follows:

1 > fit <- lm(mfc ~ sp500 , data=dat10y)

2 > summary(fit)

3

4 Call:
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5 lm(formula = mfc ~ sp500 , data = dat10y)

6

7 Residuals:

8 Min 1Q Median 3Q Max

9 -0.21652 -0.04091 -0.00232 0.04084 0.34572

10

11 Coefficients:

12 Estimate Std. Error t value Pr(>|t|)

13 (Intercept) -0.002436 0.007262 -0.335 0.738

14 sp500 1.955416 0.170676 11.457 <2e-16 ***

15 ---

16 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

' ' 1

17

18 Residual standard error: 0.07917 on 118 degrees of

freedom

19 Multiple R-squared: 0.5266 , Adjusted R-squared: 0.5226

20 F-statistic: 131.3 on 1 and 118 DF , p-value: < 2.2e-16

From Line 1 of the above output, we see that the function lm takes two arguments.
The first argument is a formula. The variable on the left hand side of the symbol
∼ is the dependent variable y ; the variable on the right hand side of the symbol is
the independent variable x. Table 2.1 gives some common names of regression
variables. The second argument specifies the data set. We saved the fitting
result to an object named fit and then used the function summary to show the
summary of the fitted regression model.

Variable y Variable x

Dependent variable Independent variable
Response Treatment
Output Input
Endogenous variable Exogenous variable
Predicted variable Predictor variable
Regressand Regressor

Table 2.1: Common names of regression variables.

The model summary contains the formula used to fit the model, summary
statistics of the residuals, the regression coefficients, and other useful information.
From the model summary, we get the intercept and slope estimates:

α̂=−0.002436, β̂= 1.955416. (2.4)
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We can also plot the fitted regression line and the data in the same figure
using the function abline as follows:

1 with(dat10y , plot(sp500 , mfc))

2 abline(fit)

The resulting plot is shown in Figure 2.3, from which we see that the data points
surround the fitted regression line.
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Figure 2.3: A scatter plot of sp500 and mfc with the fitted regression line.

g

Exercise 2.4. Use the formulas given in Equation (1.7) and write a piece of R
code to calculate the estimated regression coefficients α̂ and β̂. Compare your
results to the estimates shown in the model summary. You can use the R built-in
functions cor, sd, and mean to calculate the correlation coefficient, the sample
standard deviation, and the sample mean, respectively.

Exercise 2.5. Let x and y be the two vectors obtained from the following R code:

1 x <- dat10y$sp500

2 y <- dat10y$mfc
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(a) Write R code to compute the following sum:

n∑
i=1

wi yi , (2.5)

where n is the length of the vector x and

wi = xi − x̄

s2
x (n −1)

.

Here x̄ and sx denote the sample mean and the sample standard deviation
of x, respectively.

(b) Does the value of the sum in Equation (2.5) equal to the slope estimate β̂
given in Equation (2.4)?

h

2.6 Model Evaluation

Once we fit a basic linear regression model, we need to justify the quality of the
fit of the regression model. To measure the fit of linear regression models, we can
use the coefficient of determination, which is also referred to as R-squared.

g

Exercise 2.6. The fitted values {ŷi } can be extracted from the R object produced
by lm as follows:

1 fit <- lm(mfc ~ sp500 , data=dat10y)

2 haty <- fit$fitted.values

(a) Write R code to calculate SST , SSE , and SSR defined in Equations (1.14),
(1.15), and (1.16), respectively.

(b) Calculate SSE +SSR −SST . Is it equal to zero?

(c) Calculate the following sum

n∑
i=1

(yi − ŷi )(ŷi − ȳ).

Is it equal to zero?
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h

The R2 of the linear regression model can be found in the model summary.
For the model we just fitted, the R2 is 0.5266. The R2 shows that the basic linear
regression model explains more than half of the total variability of the dependent
variable.

g

Exercise 2.7. Suppose that we save the summary of the model into a variable as
follows:

1 fit <- lm(mfc ~ sp500 , data=dat10y)

2 fitsummary <- summary(fit)

(a) The R object fitsummary is a list. The estimated regression coefficients are
stored in the object coefficients of the list. Use list operations to extract
the estimated regression coefficients α̂ and β̂ from the list fitsummary.

(b) Use the formula in Equation (1.17) and write R code to calculate the R2.

h

In R, we can produce the ANOVA table using the function anova as follows:

1 > anova(fit)

2 Analysis of Variance Table

3

4 Response: mfc

5 Df Sum Sq Mean Sq F value Pr(>F)

6 sp500 1 0.82277 0.82277 131.26 < 2.2e-16 ***

7 Residuals 118 0.73966 0.00627

8 ---

9 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

' ' 1

The ANOVA table produced by R does not show the total sum of squares. However,
we can derive the total sum of squares by the following formula

SST = SSR +SSE .

g
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Exercise 2.8. Given the following ANOVA table produced by R:

1 Df Sum Sq Mean Sq F value Pr(>F)

2 sp500 1 0.82277 0.82277 131.26 < 2.2e-16 ***

3 Residuals 118 0.73966 0.00627

Calculate the R2 and the residual standard error s.

h

2.7 Residual Analysis

In this section, we examine the residuals to check if there are any unusual points.
To find high leverage points, we can proceed as follows:

1 > barx <- with(dat10y , mean(sp500))

2 > sx <- with(dat10y , sd(sp500))

3 > n <- dim(dat10y)[1]

4 > h <- 1/n + (dat10y$sp500 - barx)^2 / ( (n-1) * sx^2 )

5 > indh <- h > 6/n

6 > HighLeveragePoints <- dat10y[indh ,]

7 > HighLeveragePoints

8 mfc sp500

9 44 0.02373827 -0.09219977

10 45 -0.45318935 -0.17017452

11 49 -0.37464108 -0.11011453

12 81 0.16592281 0.10771471

13 > h[indh]

14 [1] 0.05145677 0.14952613 0.06898800 0.05819836

From the above R output, we see that there are four high leverage points. We can
label the high leverage points in the scatter plot using the following piece of code:

1 with(dat10y , plot(sp500 , mfc))

2 abline(fit)

3 for(i in 1:dim(HighLeveragePoints)[1] ) {

4 p <- HighLeveragePoints[i,]

5 text(p$sp500 , p$mfc , labels=rownames(p), pos =3)

6 }

The resulting plot is shown in Figure 2.4. Since the leverages for the observations
44, 45, 49, and 81 are close to 6/120 = 0.05, they are not severe high leverage
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Figure 2.4: Four high leverage points with labels above them.

points. Here we call a point a severe high leverage point if its leverage is much
larger than the average.

Now let us look at the standardized residuals to see if there are any severe
outliers. To calculate the standardized residuals and identify outliers, we proceed
as follows:

1 > e <- fit$residuals

2 > s <- sqrt( sum(e^2) / (n-2) )

3 > sr <- e / (s * sqrt(1-h) )

4 > indsr <- abs(sr) > 2

5 > Outliers <- dat10y[indsr ,]

6 > sr[indsr]

7 44 49 51 52 53

54 55 58 67 82

8 2.677566 -2.053673 4.469910 2.083716 -2.353886

3.320130 -2.751849 -2.099776 -2.518124 -2.074143

We identified ten outliers. We can label these outliers in the scatter plot using the
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following code:

1 with(dat10y , plot(sp500 , mfc))

2 abline(fit)

3 for(i in 1:dim(Outliers)[1] ) {

4 p <- Outliers[i,]

5 text(p$sp500 , p$mfc , labels=rownames(p), pos =4)

6 }

The resulting graph is shown in Figure 2.5. From the figure, we see that most of
the identified outliers are not severe outliers. Observations 51 and 54 might have
a large effect on the regression model.
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Figure 2.5: Ten outliers with labels in their right-hand sides.

From our above analysis, observations 45, 51, and 54 seem to be severe
unusual points. We can remove them and fit a new linear regression model as
follows:

1 > dat10yb <- dat10y[-c(45 ,51 ,54) ,]

2 > fitb <- lm(mfc ~ sp500 , data=dat10yb)
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3 > summary(fitb)

4

5 Call:

6 lm(formula = mfc ~ sp500 , data = dat10yb)

7

8 Residuals:

9 Min 1Q Median 3Q Max

10 -0.214103 -0.031488 0.002582 0.040869 0.187241

11

12 Coefficients:

13 Estimate Std. Error t value Pr(>|t|)

14 (Intercept) -0.004871 0.006189 -0.787 0.433

15 sp500 1.550670 0.160483 9.663 <2e-16 ***

16 ---

17 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

' ' 1

18

19 Residual standard error: 0.06653 on 115 degrees of

freedom

20 Multiple R-squared: 0.4481 , Adjusted R-squared: 0.4433

21 F-statistic: 93.36 on 1 and 115 DF, p-value: < 2.2e-16

Comparing the R2 from our first model, we see that the R2 of the new model
reduced to 0.4481. Since the three observations we removed are at both ends of
the x-axis, deleting them from the data set makes the model worse. We can keep
the original model because its R2 is higher.

g

Exercise 2.9. Suppose that dat22 is a data frame created by the following R
code2:

1 x <- c(1.5, 1.7, 2, 2.2, 2.5, 2.5, 2.7, 2.9, 3, 3.5, 3.4,

9.5, 9.5, 3.8, 4.2, 4.3, 4.6, 4, 5.1, 5.1, 5.2, 5.5)

2 y <- c(3, 2.5, 3.5, 3, 3.1, 3.6, 3.2, 3.9, 4, 4, 8, 8,

2.5, 4.2, 4.1, 4.8, 4.2, 5.1, 5.1, 5.1, 4.8, 5.3)

3 dat22 <- data.frame(x=x, y=y)

(a) Fit a linear regression model to this data set using x as the explanatory
variable and y as the dependent variable.

(b) Calculate the leverages for all the observations and identify which observa-
tions are high leverage points.

2This data set was obtained from (Frees, 2009, p. 43).
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(c) Calculate the standardized residuals for all the observations and identify
which observations are outliers.

h

2.8 Statistical Inference

To assess whether the explanatory variable (i.e., the excess returns on the S&P 500
index) is significant, we can investigate whether β= 0 using the t-test. We can
calculate the t-ratio and compare it with the critical value tn−2,1−α/2 as follows:

1 > beta <- fit$coefficients [2]

2 > n <- dim(dat10y)[1]

3 > s <- sqrt( sum(fit$residuals ^2) / (n-2) )

4 > sx <- sd(dat10y$sp500)

5 > sebeta <- s / (sx * sqrt(n-1) )

6 > d <- 0

7 > tratio <- (beta - d) / sebeta

8 > alpha <- 0.05

9 > tratio

10 sp500

11 11.45687

12 > qt(1-alpha/2, n-2)

13 [1] 1.980272

Since the t-ratio is larger than the critical value, we reject the null hypothesis
H0 at the significance level of 5%. In the above code, we used the function qt to
calculate the critical value tn−2,1−α/2. The hypothesis test we just performed is
just one of many hypothesis tests (see Table 1.2).

g

Exercise 2.10. Follow the procedures given in Table 1.2 and write R code to
perform the following hypothesis tests:

(a) H0 :β= 2 versus Ha :β 6= 2 at the significance level of 1%.

(b) H0 :β= 1.5 versus Ha :β< 1.5 at the significance level of 5%.

Exercise 2.11. Write R code to calculate a 95% confidence interval for the slope
estimate β̂.
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Exercise 2.12. Suppose that the excess return on the S&P 500 index is −10%.
Write R code to calculate a 99% prediction interval of the excess return on Man-
ulife Financial’s stock.

h

2.9 Summary

In this chapter, we introduced how to implement the capital asset pricing model
using basic linear regression models. The CAPM is a model for pricing an individ-
ual security or portfolio. For more information on the CAPM, readers are referred
to (Campbell et al., 1996, Chapter 5) and (Cochrane, 2001, Chapter 9). Through
this case study, we introduced how to build and analyze basic linear regression
models using R. In particular, we introduced how to visualize data and check
some assumptions of regression models, fit a basic linear regression model to a
dataset, and evaluate the fitted model, among others.

2.10 End-of-Chapter Exercises

Exercise 2.13. Given the following R output of a regression model

Call:

lm(formula = Y ~ X, data = data4c)

Residuals:

Min 1Q Median 3Q Max

-0.87482 -0.02201 0.01517 0.05316 0.28862

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.17469 0.04537 -3.85 0.00014 ***

X 1.01923 0.01012 100.73 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09373 on 353 degrees of freedom

Multiple R-squared: 0.9664, Adjusted R-squared: 0.9663

F-statistic: 1.015e+04 on 1 and 353 DF, p-value: < 2.2e-16

and
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> qt(0.95,353)

[1] 1.649182

> qt(0.975,353)

[1] 1.966707

(a) What does −0.17469 mean?

(b) Is variable X significant? Why?

(c) What are the hypotheses associated with the t-value 100.73?

(d) What is the mean square error of this model?

(e) What is the sample standard deviation of the variable X ?

(f) Suppose that the variable X has a change of 3. What is the expected change
of Y?

(g) Suppose that the variable X has a change of 2. What is the 95% confidence
interval of the expected change in Y?

(h) Test the following hypothesis at the 5% level of significance:

H0 :β1 = 1 versus Ha :β1 6= 1

(i) Test the following hypothesis at the 5% level of significance:

H0 :β1 = 1 versus Ha :β1 > 1

Exercise 2.14. Summary statistics of the variables income (in thousands) and
education (in years) are provided below:

> summary(income)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.611 4.106 5.930 6.798 8.187 25.880

> sd(income)

[1] 4.245922

> summary(education)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.380 8.445 10.540 10.740 12.650 15.970

> sd(education)

[1] 2.728444
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The regression model

income =β0 +β1education+ε

was fitted to the data summarized above. The fitted regression line is shown in
Figure 2.6.
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Figure 2.6: The linear regression model fitted to the data.

The ANOVA table from the fit and additional R outputs are given below:

> anova(fit)

Analysis of Variance Table

Response: income

Df Sum Sq Mean Sq F value Pr(>F)

education 1 607.42 607.42 50.06 2.079e-10 ***

Residuals 100 1213.39 12.13

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> qt(.95,100)

[1] 1.660234

> qt(.975,100)

[1] 1.983972

(a) How many observations were used to fit the model?

(b) Calculate the coefficient of determination and interpret this value.


	Foreword
	Preface
	Access to R Code and Data Sets
	I Supervised Learning
	Simple Linear Regression
	Scatter Plots and Regression
	Simple Linear Regression Model
	Ordinary Least Squares Estimation
	Model Evaluation
	Statistical Inference
	Residual Analysis
	Summary
	End-of-Chapter Exercises

	Case Study: Implementing the CAPM
	Problem Description
	Data Description
	Loading the Data into R
	Data Visualization and Summarization
	Fitting a Basic Linear Regression Model
	Model Evaluation
	Residual Analysis
	Statistical Inference
	Summary
	End-of-Chapter Exercises

	Multiple Linear Regression Models
	Scatter Plot Matrix
	Independent Variables and Regressors
	Multiple Linear Regression Model
	Ordinary Least of Squares Estimation
	Model Evaluation
	Statistical Inference
	Transformations
	Regression Diagnostics
	Variable Selection
	Collinearity
	Summary
	End-of-Chapter Exercises

	Case Study: Predicting Intraday Movements
	Problem Description
	Data Description
	Multiple Linear Regression
	Fitting a Multiple Linear Regression Model
	Model Evaluation
	Model Selection
	Influential Points
	Collinearity
	Heteroscedasticity
	Statistical Inference
	Summary
	End-of-Chapter Exercises

	Case Study: Estimating Fair Market Values
	Problem Description
	Data Description
	Loading the Data into R
	Selecting Variables and Preparing Training Data
	Categorical Variables
	Building a Multiple Linear Regression Model
	Model Evaluation
	Statistical Inference for Several Coefficients
	Summary

	Generalized Linear Models
	Linear Exponential Family of Distributions
	GLM Models
	Maximum Likelihood Estimation
	Residuals
	Model Evaluation
	Summary
	End-of-Chapter Exercises

	Case Study: Predicting Demand
	Problem Description
	Data Description
	Loading Data into R
	Binary Dependent Variables
	Logistic and Probit Regression Models
	The Method of Maximum Likelihood
	Model Evaluation
	Summary
	End-of-Chapter Exercises

	Case Study: Modeling the Number of Auto Claims
	Problem Description
	Data Description
	Poisson Regression Models
	Negative Binomial Regression Models
	Model Evaluation
	Summary
	End-of-Chapter Exercises

	Case Study: Modeling the Loss Severity
	Problem Description
	Data Description
	The Gamma Regression Model
	Fitting the Gamma Regression Model
	Prediction
	Model Evaluation
	Summary

	Decision Trees
	Tree-Based Models
	Regression Trees
	Classification Trees

	Prediction Models
	Bagging
	Boosting
	Random Forests

	Comparison with Linear Models
	Summary
	End-of-Chapter Exercises

	Case Study: Decision Trees
	Preparing Data
	Fitting Regression Trees
	Pruning Trees
	Prediction with a Single Tree
	Prediction with Many Trees
	Summary
	End-of-Chapter Exercises


	II Unsupervised Learning
	Data Clustering
	The Basics of Data Clustering
	Hierarchical Algorithms
	Partitional Algorithms
	Summary
	End-of-Chapter Exercises

	Case Study: Clustering Variable Annuity Policies
	Hierarchical k-means
	Preparing Data
	Performing Data Clustering
	Predictive Modeling Results
	Summary

	Principal Component Analysis
	Principal Components
	Empirical Principal Components
	Computing Principal Components
	Other Issues
	Summary
	End-of-Chapter Exercises

	Case Study: PCA on Interest Rate Swaps
	Loading Swap Rates into R
	Principal Component Analysis
	Summary
	End-of-Chapter Exercises


	III Time Series Models
	Time Series Models
	Introduction
	Trend Models
	Random Walk Models
	Autoregressive Models
	ARIMA Models
	Smoothing Techniques
	ARCH
	Model Evaluation
	Summary
	End-of-Chapter Exercises

	Case Study: Forecasting Exchange Rates
	Data Desciption
	Loading Data into R
	Fitting Trend Models
	Fitting Random Walk Models
	Fitting Autoregressive Models
	ARIMA Models
	Forecast Evaluation
	Summary


	IV Simulation
	Case Study: Profitability Analysis
	Introduction to Simulation
	Simulating Discrete Random Variables
	Simulating Continuous Random Variables
	Problem Description
	Summary
	End-of-Chapter Exercises

	Case Study: Simulating the Future Lifetime
	Time-Until-Death Random Variables
	Curtate Future Lifetime
	Expectation of Life
	Simulating Gompertz Lifetime Distributions
	Applications to Life Insurance Pricing and Reserving
	Simulating Makeham Lifetime Distributions
	Simulating from a Mortality Table
	Summary
	End-of-Chapter Exercises

	Introduction to R
	How to Run R
	Variables
	Vectors
	Matrices
	Lists
	Data Frames
	Factors and Tables
	File IO
	Functions
	Flow Control and Loops
	Graphics
	Packages
	Summary

	References
	Index
	Index of R Functions

	Blank Page



